Commonly used properties of Logarithms.

Bases MUST be the same for the properties below to hold true.

- **Equality Property of Logarithms**
 \[\log_b x = \log_b y \iff x = y \]
 If everything is a Log, you may cancel across equal signs

- **Product Property of Logarithms**
 \[\log_b x + \log_b y = \log_b (xy) \]
 Arguments in logs that are added, are multiplied.

- **Quotient Property of Logarithms**
 \[\log_b x - \log_b y = \log_b \left(\frac{x}{y}\right) \]
 Arguments in logs that are subtracted, are divided.

- **Power Property of Logarithms**
 \[\log_b x^y = y \log_b x \]
 Coefficients can be placed as an exponent of the argument.

Try the problems below and check your work on the second page.

Example One:
Rewrite as a single log. \[4 \log_3 x + \log_3 5 \]

Example Two:
Rewrite as a single log. \[\log_4 1 + \log_4 a \]

Example Three:
Solve \[\log_2 x + \log_2 m = \log_2 6 \]

Example Four:
Solve \[\left(\frac{1}{2}\right)\log_3 91 + \left(\frac{1}{3}\right)\log_3 8 = \log_3 x \]

Answers

Example One: \[4 \log_3 x + \log_3 5 \ldots \log_3 x^4 + \log_3 5 \ldots \log_3 5x^4 \]

Example Two: A log with a base of 4 and another with a base of 3 cannot be combined.

Example Three: \[\log_2 x + \log_2 m = \log_2 6 \ldots \log_2 2m = \log_2 6 \ldots 2m = 6 \ldots m = 3 \]

Example Four: \[\left(\frac{1}{2}\right)\log_3 91 + \left(\frac{1}{3}\right)\log_3 8 = \log_3 x \ldots \log_3 81^{\left(\frac{1}{2}\right)} + \log_3 8^{\left(\frac{1}{3}\right)} = \log_3 x \ldots \log_3 9 + \log_3 2 = \log_3 x \ldots \log_3 18 = \log_3 x \ldots 18 = x \]

The End